Pattern-Similarity-Based Model for Time Series Prediction
نویسندگان
چکیده
This research proposes a pattern/shape-similarity-based clustering approach for time series prediction. This article uses single hidden Markov model (HMM) for clustering and combines it with soft computing techniques (fuzzy inference system/artificial neural network) for the prediction of time series. Instead of using distance function as an index of similarity, here shape/pattern of the sequence is used as the similarity index for clustering, which overcomes few of the shortcomings associated with distance-based clustering approaches. Underlying hidden properties of time series are captured with the help of HMM. The prediction method used here exploits the pattern identification prowess of the HMM for cluster selection and the generalization and nonlinear modeling capabilities of soft computing methods to predict the output of the system. To see the validity of the proposed method in the real-life scenario, it is tested on four different time series. The first is a benchmark Mackey–Glass time series, which is tested for delay parameters D 17 and D 30. The remaining time series are monthly sunspot data time series, Laser data time series and the last is Lorenz attractor time series. Simulation results show that the proposed method provide a better prediction performance in comparison with the existing methods.
منابع مشابه
A Novel Fuzzy Based Method for Heart Rate Variability Prediction
Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملRisk prediction based on a time series case study: Tazareh coal mine
In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices was for a nine year period of time from 2005 to 2013. After extrusion of the trend, seasonali...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملA combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations
Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Intelligence
دوره 31 شماره
صفحات -
تاریخ انتشار 2015